Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.010
Filtrar
1.
J Med Chem ; 67(6): 5093-5108, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38476002

RESUMO

Leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have provided strong evidence that LTA4H is an attractive drug target for the treatment of chronic inflammatory diseases. Here, we describe the transformation of compound 2, a fragment-like hit, into the potent inhibitor of LTA4H 3. Our strategy involved two key steps. First, we aimed to increase the polarity of fragment 2 to improve its drug-likeness, particularly its solubility, while preserving both its promising potency and low molecular weight. Second, we utilized structural information and incorporated a basic amino function, which allowed for the formation of an essential hydrogen bond with Q136 of LTA4H and consequently enhanced the potency. Compound 3 exhibited exceptional selectivity and showed oral efficacy in a KRN passive serum-induced arthritis model in mice. The anticipated human dose to achieve 90% target engagement at the trough concentration was determined to be 40 mg administered once daily.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Camundongos , Humanos , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Leucotrieno B4
2.
Front Immunol ; 15: 1295150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384456

RESUMO

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.


Assuntos
Leucotrieno B4 , Neutrófilos , Salmonella typhimurium , Acetilcisteína/farmacologia , Diamida/farmacologia , Leucotrienos/farmacologia , Fatores Quimiotáticos , Oxirredução , Antioxidantes/farmacologia , Glutationa/farmacologia , Compostos de Sulfidrila/farmacologia
3.
Cell Mol Immunol ; 21(3): 245-259, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297112

RESUMO

Invasive fungal infections are life-threatening, and neutrophils are vital cells of the innate immune system that defend against them. The role of LTA4H-LTB4-BLT1 axis in regulation of neutrophil responses to fungal infection remains poorly understood. Here, we demonstrated that the LTA4H-LTB4-BLT1 axis protects the host against Candida albicans and Aspergillus fumigatus, but not Cryptococcus neoformans infection, by regulating the antifungal activity of neutrophils. Our results show that deleting Lta4h or Blt1 substantially impairs the fungal-specific phagocytic capacity of neutrophils. Moreover, defective activation of the spleen tyrosine kinase (Syk) and extracellular signal-related kinase (ERK1/2) pathways in neutrophils accompanies this impairment. Mechanistically, BLT1 regulates CR3-mediated, ß-1,3-glucan-induced neutrophil phagocytosis, while a physical interaction with CR3 with slight influence on its dynamics is observed. Our findings thus demonstrate that the LTA4H-LTB4-BLT1 axis is essential for the phagocytic function of neutrophils in host antifungal immune response against Candida albicans and Aspergillus fumigatus.


Assuntos
Antifúngicos , Neutrófilos , Antifúngicos/farmacologia , Leucotrieno B4/metabolismo , Receptores de Leucotrienos/metabolismo , Receptores do Leucotrieno B4/metabolismo , Antígeno CD11b/metabolismo
4.
PLoS Pathog ; 20(1): e1011280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271464

RESUMO

Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.


Assuntos
Peste , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/metabolismo , Peste/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Leucotrieno B4/metabolismo , Leucócitos/metabolismo , Inflamação , Proteínas de Bactérias/metabolismo
5.
Biomed Pharmacother ; 171: 116127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198951

RESUMO

The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.


Assuntos
Epóxido Hidrolases , Inflamação , Queratinócitos , Ácido Linoleico , Animais , Camundongos , Proliferação de Células , Compostos de Epóxi , Queratinócitos/citologia , Queratinócitos/enzimologia , Leucotrieno B4 , Ácido Linoleico/metabolismo
6.
Res Vet Sci ; 168: 105160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278027

RESUMO

Exhaled breath condensate (EBC) collection is a non-invasive sampling method that provides valuable information regarding the health status of the respiratory system by measuring inflammatory mediators, such as pH, hydrogen peroxide, and leukotriene B4. This scoping review aimed to provide an update on the collection and analysis of EBC in horses. A systematic search of three electronic databases, PubMed, Google Scholar, Science Direct, identified 40,978 articles, of which 1590 duplicates were excluded. Moreover, 39,388 articles were excluded because of irrelevance to this review, such as studies on other species, studies on respiratory exhalation, reviews, and theses. Finally, we evaluated 14 articles in this review. Our review revealed significant differences in the collection, storage, and processing of EBC samples, emphasizing the need for standardizing the technique and using specific equipment to improve the interpretation of the results.


Assuntos
Testes Respiratórios , Sistema Respiratório , Animais , Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Cavalos , Concentração de Íons de Hidrogênio , Leucotrieno B4/análise
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 843-856, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37515737

RESUMO

This study aimed to quantify and explain inter-subject variability in morniflumate pharmacokinetics and identify effective covariates through population pharmacokinetics modeling. Models were constructed using bioequivalence pharmacokinetics results from healthy Korean males and individual physiological and biochemical parameters. Additionally, we incorporated previously reported pharmacokinetics results of niflumic acid, a major active metabolite of morniflumate, to extend the established population pharmacokinetics model and predict niflumic acid pharmacokinetics. Moreover, we used quantitative reports of leukotriene B4 (LTB4) synthesis inhibition in response to niflumic acid exposure to predict drug efficacy using Sigmoid Emax model. Population pharmacokinetics profiles of morniflumate were described using a multi-absorption (5-sequential) two-compartment model, and analysis of inter-individual variability suggested that volume of distribution in peripheral compartment was correlated with body mass index (BMI). Model simulation results showed that individuals with lower BMI had higher plasma concentrations of morniflumate and niflumic acid, resulting in increased and sustained inhibition of LTB4 synthesis. Under steady-state conditions, average plasma concentrations of morniflumate and niflumic acid were 2.66-2.68 times higher in group with a BMI of 17.36 kg/m2 compared to the group with a BMI of 28.41 kg/m2. Additionally, inhibition of LTB4 synthesis was 1.02 times higher in group with a BMI of 17.36 kg/m2 compared to group with a BMI of 28.41 kg/m2, and the fluctuation was significantly reduced from 6.06 to 0.01%. These findings suggest that the concentration of active metabolite in plasma following morniflumate exposure was lower in the obese group compared to the normal group, thus potentially reducing the drug's efficacy.


Assuntos
Anti-Inflamatórios não Esteroides , Ácido Niflúmico , Masculino , Humanos , Ácido Niflúmico/farmacocinética , Leucotrieno B4 , República da Coreia
8.
Microb Biotechnol ; 17(1): e14379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085112

RESUMO

Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.


Assuntos
Edwardsiella tarda , Resistência a Tetraciclina , Humanos , Edwardsiella tarda/metabolismo , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Força Próton-Motriz , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Bactérias/metabolismo
9.
J Biol Chem ; 300(1): 105561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097183

RESUMO

Chronic inflammation is the underlying cause of many diseases, including type 1 diabetes, obesity, and non-alcoholic fatty liver disease. Macrophages are continuously recruited to tissues during chronic inflammation where they exacerbate or resolve the pro-inflammatory environment. Although leukotriene B4 receptor 2 (BLT2) has been characterized as a low affinity receptor to several key eicosanoids and chemoattractants, its precise roles in the setting of inflammation and macrophage function remain incompletely understood. Here we used zebrafish and mouse models to probe the role of BLT2 in macrophage function during inflammation. We detected BLT2 expression in bone marrow derived and peritoneal macrophages of mouse models. Transcriptomic analysis of Ltb4r2-/- and WT macrophages suggested a role for BLT2 in macrophage migration, and studies in vitro confirmed that whereas BLT2 does not mediate macrophage polarization, it is required for chemotactic function, possibly mediated by downstream genes Ccl5 and Lgals3. Using a zebrafish model of tailfin injury, we demonstrated that antisense morpholino-mediated knockdown of blt2a or chemical inhibition of BLT2 signaling impairs macrophage migration. We further replicated these findings in zebrafish models of islet injury and liver inflammation. Moreover, we established the applicability of our zebrafish findings to mammals by showing that macrophages of Ltb4r2-/- mice have defective migration during lipopolysaccharide stimulation in vivo. Collectively, our results demonstrate that BLT2 mediates macrophage migration during inflammation, which implicates it as a potential therapeutic target for inflammatory pathologies.


Assuntos
Movimento Celular , Macrófagos , Receptores do Leucotrieno B4 , Animais , Camundongos , Inflamação/genética , Inflamação/metabolismo , Leucotrieno B4/genética , Leucotrieno B4/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Receptores do Leucotrieno B4/genética , Receptores do Leucotrieno B4/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
J Transl Med ; 21(1): 923, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124204

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is poorly treated due to the presence of an inhibitory immune microenvironment. Tumor-associated macrophages (TAM) are an important component of TME. ALOX5 is an important lipid metabolism enzyme in cancer progression, but the mechanism by which it regulates TAM to promote ICC progression is unknown. The aim of this study was to investigate the potential mechanism of TAM regulation by ALOX5 and the translational effect of targeting ALOX5. METHODS: In this study, we investigated the association between the spatial localization of epithelial cells and TAMs by combining scRNA-seq analysis with multiplex immunofluorescence analysis. Through bulk sequencing analysis and spatial analysis, lipid metabolism genes closely related to TAM infiltration were screened. In vitro co-culture model was constructed to verify that ALOX5 and its downstream metabolite LTB4 promote M2 macrophage migration. Bulk sequencing after co-culture combined with single-cell analysis was performed to identify key pathways for up-regulation of M2 macrophage migration. Finally, the effect of CSF1R inhibitor (PLX3397) combined with ALOX5 inhibitor (Zileuton) in vivo was investigated by by xenograft tumor formation experiment in nude mice. RESULTS: ALOX5 in ICC cells was a key lipid metabolism gene affecting the infiltration of M2 macrophages in TME. Mechanically, LTB4, a metabolite downstream of ALOX5, recruited M2 macrophages to migrate around tumor cells by binding to BLT1/BLT2 and activating the PI3K pathway, which ultimately lead to the promotion of ICC progression. Targeting CSF1R in combination with ALOX5 inhibitor effectively reduced tumor volume and M2 macrophage infiltration abundance. CONCLUSION: In ICC, LTB4, a metabolite secreted by ALOX5 of epithelial cells, binded to BLT1/BLT2 on TAM surface to activate PI3K pathway and promote TAM migration, thus promoting ICC progression. Targeting CSF1R in combination with ALOX5 inhibitor for ICC is a promising combination therapy modality.


Assuntos
Colangiocarcinoma , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Humanos , Macrófagos Associados a Tumor , Camundongos Nus , Leucotrieno B4 , Colangiocarcinoma/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Araquidonato 5-Lipoxigenase
11.
Int Immunopharmacol ; 125(Pt A): 111143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913569

RESUMO

BACKGROUND: Sepsis is a critical systemic inflammatory syndrome which usually leads to multiple organ dysfunction. Caffeic acid (CA), a phenolic compound derived from various plants, has been proved to be essential in neuroprotection, but its role in septic organ damage is unclear. This research aimed to investigate whether CA protects against organ injury in a mouse model of cecal ligation and puncture (CLP). METHODS: CA (30 mg/kg) or vehicle was administered by intraperitoneal injection immediately after CLP. The samples of blood, lungs, and livers were collected 24 h later. Organ injury was assessed by histopathological examination (HE staining), neutrophil infiltration (myeloperoxidase fluorescence), oxidative stress levels (MDA, SOD, HO-1), and inflammatory cytokines (TNF-α, IL-1ß, and IL-6) release in lung and liver tissues. Neutrophil extracellular trap (NET) formation was analyzed by immunofluorescence. In vitro experiments were performed to investigate the potential mechanisms of CA using small interfering RNA (siRNA) techniques in neutrophils, and the effect of CA on neutrophil apoptosis was analyzed by flow cytometry. RESULTS: Results showed that CA treatment improved the 7-day survival rate and attenuated the histopathological injury in the lung and liver of CLP mice. CA significantly reduced neutrophil infiltration in the lungs and livers of CLP mice. TNF-α, IL-1ß, IL-6 and LTB4 were reduced in serum, lung, and liver of CA-treated CLP mice, and phosphorylation of MAPK (p38, ERK, JNK) and p65 NF-κB was inhibited in lungs and livers. CA treatment further increased HO-1 levels and enhanced superoxide dismutase (SOD) activity, but reduced malondialdehyde (MDA) levels and NET formation. Similarly, in vitro experiments showed that CA treatment and 5-LOX siRNA interference inhibited inflammatory activation and NET release in neutrophils, suppressed MAPK and NF-κB phosphorylation in LPS-treated neutrophils, and decreased LTB4 and cfDNA levels. Flow cytometric analysis revealed that CA treatment reversed LPS-mediated delayed apoptosis in human neutrophils, and Western blot also indicated that CA treatment inhibited Bcl-2 expression but increased Bax expression. CA treatment did not induce further changes in neutrophil apoptosis, inflammatory activation, and NET release when 5-LOX was knocked down by siRNA interference. CONCLUSIONS: CA has a protective effect on lung and liver injury in a murine model of sepsis, which may be related to inhibition of the 5-LOX/LTB4 pathway.


Assuntos
Neutrófilos , Sepse , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Leucotrieno B4 , Interleucina-6 , Lipopolissacarídeos , Sepse/metabolismo , RNA Interferente Pequeno , Superóxido Dismutase , Camundongos Endogâmicos C57BL
12.
Clin Transl Med ; 13(11): e1483, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965796

RESUMO

BACKGROUND: Oncogenic PIK3CA mutations (PIK3CAmut ) frequently occur in a higher proportion in luminal breast cancer (LBC), especially in refractory advanced cases, and are associated with changes in tumour cellular metabolism. Nevertheless, its effect on the progression of the immune microenvironment (TIME) within tumours and vital molecular events remains veiled. METHODS: Multiplex immunohistochemistry (mIHC) and single-cell mass cytometry (CyTOF) was used to describe the landscape of TIME in PIK3CAmut LBC. The PIK3CA mutant cell lines were established using CRISPER/Cas9 system. The gene expression levels, protein secretion and activity of signaling pathways were measured by real-time RT-PCR, ELISA, immunofluorescence staining or western blotting. GSEA analysis, transwell chemotaxis assay, live cell imaging, flow cytometry metabolite analysis targeting arachidonic acid, Dual-luciferase reporter assay, and Chromatin immunoprecipitation assay were used to investigate the underlying function and mechanism of the PI3K/5-LOX/LTB4 axis. RESULTS: PIK3CAmut LBC cells can induce an immunosuppressive TIME by recruiting myeloid-derived suppressor cells (MDSCs) and excluding cytotoxic T cells via the arachidonic acid (AA) metabolism pathway. Mechanistically, PIK3CAmut activates the transcription of 5-lipoxygenase (5-LOX) in a STAT3-dependent manner, which in turn directly results in high LTB4 production, binding to BLT2 on MDSCs and promoting their infiltration. Since a suppressive TIME is a critical barrier for the success of cancer immunotherapy, the strategies that can convert "cold" tumours into "hot" tumours were compared. Targeted therapy against the PI3K/5-LOX/LTB4 axis synergizing with immune checkpoint blockade (ICB) therapy achieved dramatic shrinkage in vivo. CONCLUSIONS: The results emphasize that PIK3CAmut can induce immune evasion by recruiting MDSCs through the 5-LOX-dependent AA pathway, and combination targeted therapy with ICB may provide a promising treatment option for refractory advanced LBC patients.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Feminino , Humanos , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Neoplasias da Mama/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Imunossupressores , Leucotrieno B4/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral
13.
J Phys Chem B ; 127(48): 10338-10350, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38010510

RESUMO

Leukotriene A4 hydrolase (LTA4H) functions as a mono-zinc bifunctional enzyme with aminopeptidase and epoxidase activities. While the aminopeptidase mechanism is well understood, the epoxidase mechanism remains less clear. In continuation of our prior research, we undertook an in-depth exploration of the LTA4H catalytic role as an epoxidase, employing a combined SCC-DFTB/CHARMM method. In the current work, we found that the conversion of LTA4 to leukotriene B4 (LTB4) involves three successive steps: epoxy ring opening (RO), nucleophilic attack (NA), and proton transfer (PT) reactions at the epoxy oxygen atom. Among these steps, the RO and NA stages constitute the potential rate-limiting step within the entire epoxidase mechanism. Notably, the NA step implicates D375 as the general base catalyst, while the PT step engages protonated E271 as the general acid catalyst. Additionally, we delved into the mechanism behind the formation of the isomer product, Δ6-trans-Δ8-cis-LTB4. Our findings debunked the feasibility of a direct LTB4 to iso-LTB4 conversion. Instead, we highlight the possibility of isomerization from LTA4 to its isomeric conjugate (iso-LTA4), showing comparable energy barriers of 5.1 and 5.5 kcal/mol in aqueous and enzymatic environments, respectively. The ensuing dynamics of iso-LTA4 hydrolysis subsequently yield iso-LTB4 via a mechanism akin to LTA4 hydrolysis, albeit with a heightened barrier. Our computations firmly support the notion that substrate isomerization exclusively takes place prior to or during the initial substrate-binding phase, while LTA4 remains the dominant conformer. Notably, our simulations suggest that irrespective of the active site's constrained L-shape, isomerization from LTA4 to its isomeric conjugate remains plausible. The mechanistic insights garnered from our simulations furnish a valuable understanding of LTA4H's role as an epoxidase, thereby facilitating potential advancements in inhibitor design.


Assuntos
Epóxido Hidrolases , Leucotrieno B4 , Leucotrieno B4/química , Leucotrieno A4 , Epóxido Hidrolases/química , Aminopeptidases
14.
ORL J Otorhinolaryngol Relat Spec ; 85(6): 321-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37935139

RESUMO

INTRODUCTION: Relevant studies have demonstrated that glucocorticoids and antihistamines, such as budesonide and azelastine, are effective in the treatment of vasomotor rhinitis, with their combined use being more effective than that of a single drug. The aim of this study was to assess the improvement in the symptoms of patients following the combined administration of these drugs. METHODS: We conducted a single-center randomized study on 42 patients. Participants were randomly treated with budesonide, levocabastine hydrochloride, or their combination for 2 weeks. The visual analog scale (VAS) score and levels of eosinophil cationic protein (ECP), histamine (HA), leukotriene B4 (LTB4), and vasoactive intestinal peptide (VIP) in nasal secretions were evaluated before and after treatment. RESULTS: The symptoms of patients were improved in all 3 treatment groups compared with those before treatment. Following combined treatment, the improvement in symptoms of nasal obstruction, runny nose, nasal itching, and sneezing was much greater than those in the groups treated with budesonide or levocabastine hydrochloride alone (p = 0.04, 0.004, 0.005, 0.004, respectively). The decreased levels of these inflammatory mediators were significantly different between the different treatment groups. CONCLUSIONS: Budesonide or levocabastine hydrochloride alone improved the nasal symptoms of patients with vasomotor rhinitis and reduced the levels of ECP, HA, LTB4, and VIP in nasal secretions. However, their combination improved the symptoms of patients more significantly than each drug alone.


Assuntos
Budesonida , Rinite Vasomotora , Humanos , Budesonida/uso terapêutico , Rinite Vasomotora/tratamento farmacológico , Leucotrieno B4 , Administração Intranasal , Método Duplo-Cego
15.
Sci Signal ; 16(805): eadd1845, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788324

RESUMO

Human neutrophils respond to multiple chemoattractants to guide their migration from the vasculature to sites of infection and injury, where they clear pathogens and amplify inflammation. To properly focus their responses during this complex navigation, neutrophils prioritize pathogen- and injury-derived signals over long-range inflammatory signals, such as the leukotriene LTB4, secreted by host cells. Different chemoattractants can also drive qualitatively different modes of migration even though their receptors couple to the same Gαi family of G proteins. Here, we used live-cell imaging to demonstrate that the responses differed in their signaling dynamics. Low-priority chemoattractants caused transient responses, whereas responses to high-priority chemoattractants were sustained. We observed this difference in both primary neutrophils and differentiated HL-60 cells, for downstream signaling mediated by Ca2+, a major regulator of secretion, and Cdc42, a primary regulator of polarity and cell steering. The rapid attenuation of Cdc42 activation in response to LTB4 depended on the phosphorylation sites Thr308 and Ser310 in the carboxyl-terminal tail of its receptor LTB4R in a manner independent of endocytosis. Mutation of these residues to alanine impaired chemoattractant prioritization, although it did not affect chemoattractant-dependent differences in migration persistence. Our results indicate that distinct temporal regulation of shared signaling pathways distinguishes between receptors and contributes to chemoattractant prioritization.


Assuntos
Leucotrieno B4 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Leucotrieno B4/farmacologia , Leucotrieno B4/metabolismo , Fatores Quimiotáticos/farmacologia , Fatores Quimiotáticos/metabolismo , Interleucina-8/metabolismo , Transdução de Sinais
16.
FASEB J ; 37(11): e23213, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795742

RESUMO

G protein-coupled receptors (GPCRs) utilize complex cellular systems to respond to diverse ligand concentrations. By taking BLT1, a GPCR for leukotriene B4 (LTB4 ), as a model, our previous work elucidated that this system functions through the modulation of phosphorylation status on two specific residues: Thr308 and Ser310 . Ser310 phosphorylation occurs at a lower LTB4 concentration than Thr308 , leading to a shift in ligand affinity from a high-to-low state. However, the implications of BLT1 phosphorylation in signal transduction processes or the underlying mechanisms have remained unclear. Here, we identify the sequential BLT1-engaged conformations of ß-arrestin and subsequent alterations in signal transduction. Stimulation of the high-affinity BLT1 with LTB4 induces phosphorylation at Ser310 via the ERK1/2-GRK pathway, resulting in a ß-arrestin-bound low-affinity state. This configuration, referred to as the "low-LTB4 -induced complex," necessitates the finger loop region and the phosphoinositide-binding motif of ß-arrestins to interact with BLT1 and deactivates the ERK1/2 signaling. Under high LTB4 concentrations, the low-affinity BLT1 again binds to the ligand and triggers the generation of the low-LTB4 -induced complex into a different form termed "high-LTB4 -induced complex." This change is propelled by The308 -phosphorylation-dependent basal phosphorylation by PKCs. Within the high-LTB4 -induced complex, ß-arrestin adapts a unique configuration that involves additional N domain interaction to the low-affinity BLT1 and stimulates the PI3K/AKT pathway. We propose that the stepwise phosphorylation of BLT1 defines the formation of complex assemblies, wherein ß-arrestins perform distinct functions.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Fosforilação , beta-Arrestinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligantes , beta-Arrestina 1/metabolismo , Receptores do Leucotrieno B4/metabolismo , Leucotrieno B4/metabolismo
17.
Tuberculosis (Edinb) ; 143: 102418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813014

RESUMO

Pulmonary tuberculosis (TB) inflammation is an underestimated disease complication which anti-inflammatory drugs may alleviate. This study explored the potential use of the COX-2 inhibitors acetylsalicylic acid (ASA) and celecoxib in 12 TB patients and 12 healthy controls using a whole-blood ex vivo model where TNFα, PGE2, and LTB4 plasma levels were quantitated by ELISA; we also measured COX-2, 5-LOX, 12-LOX, and 15-LOX gene expression. We observed a significant TNFα production in response to stimulation with LPS or M. tuberculosis (Mtb). Celecoxib, but not ASA, reduced TNFα and PGE2 production, while increasing LTB4 in patients after infection with Mtb. Gene expression of COX-2 and 5-LOX was higher in controls, while 12-LOX was significantly higher in patients. 15-LOX expression was similar in both groups. We concluded that COX-2 inhibitors downregulate inflammation after Mtb infection, and our methodology offers a straightforward time-efficient approach for evaluating different drugs in this context. Further research is warranted to elucidate the underlying mechanisms and assess the potential clinical benefit.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dinoprostona , Imunidade , Inflamação/metabolismo , Leucotrieno B4/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico , Fator de Necrose Tumoral alfa
18.
Eur J Med Chem ; 261: 115864, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37839347

RESUMO

Leukotriene B4 (LTB4) is a potent chemoattractant that can recruit and activate immune cells such as neutrophils, eosinophils, and monocytes to sites of inflammation. Excessive production of LTB4 has been linked to acute and chronic inflammatory diseases, including asthma, rheumatoid arthritis, and psoriasis. Inhibiting the binding of LTB4 to its receptors, BLT1 and BLT2, is a potential strategy for treating these conditions. While several BLT1 antagonists have been developed for clinical trials, most have failed due to efficacy and safety issues. Therefore, discovering selective BLT2 antagonists could improve our understanding of the distinct functions of BLT1 and BLT2 receptors and their pharmacological implications. In this study, we aimed to discover novel BLT2 antagonists by synthesizing a series of biphenyl analogues based on a BLT2 selective agonist, CAY10583. Among the synthesized compounds, 15b was found to selectively inhibit the chemotaxis of CHO-BLT2 cells with an IC50 value of 224 nM without inhibiting the chemotaxis of CHO-BLT1 cells. 15b also inhibited the binding of LTB4 and BLT2 with a Ki value of 132 nM. Furthermore, 15b had good metabolic stability in liver microsomes and moderate bioavailability (F = 34%) in in vivo PK studies. 15b also showed in vivo efficacy in a mouse model of asthma, reducing airway hyperresponsiveness by 59% and decreasing Th2 cytokines by up to 46%. Our study provides a promising lead for the development of selective BLT2 antagonists as potential therapeutics for inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease.


Assuntos
Artrite Reumatoide , Asma , Camundongos , Cricetinae , Animais , Leucotrieno B4 , Asma/tratamento farmacológico , Inflamação , Células CHO , Receptores do Leucotrieno B4/metabolismo
19.
Prostaglandins Other Lipid Mediat ; 169: 106781, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37704124

RESUMO

Persistent and chronic unresolved inflammation exerts a critical role in developing atherosclerosis; however, mechanisms that prevent the resolution of inflammation in atherosclerosis are poorly delineated. This study aims to evaluate the serum levels of inflammatory high-sensitivity C-reactive protein (hsCRP), pro-inflammatory leukotriene B4 (LTB4), besides anti-inflammatory compounds, including eicosapentaenoic acid (EPA) and its derivative resolvin E1 (RvE1) in patients with atherosclerosis. Thirty-four atherosclerosis patients and thirty-two age- and sex-matched healthy individuals were included in this study. The serum levels of hsCRP, LTB4, EPA, and RvE1 were measured using the enzyme-linked immunosorbent assay (ELISA) technique. Our results showed that the hsCRP serum levels in the three-vessel disease (3VD) subgroup of patients are significantly lower than those in the mild and single-vessel disease (SVD) subgroups (P < 0.05). Besides, the serum levels of LTB4 were meaningfully greater in patients with atherosclerosis compared to healthy controls (P < 0.05). Also, the serum EPA and RvE1 levels were significantly higher in patients than in controls (P < 0.01 and P < 0.05, respectively). However, the ratio of RvE1 to LTB4 (RvE1:LTB4) in patients was significantly reduced to that in controls (P < 0.0001). These findings illustrate that imbalanced pro-resolving RvE1 and pro-inflammatory LTB4 might contribute to failing vascular inflammation resolution and subsequent progression toward chronic inflammation in atherosclerosis.


Assuntos
Aterosclerose , Ácido Eicosapentaenoico , Humanos , Leucotrieno B4 , Proteína C-Reativa , Inflamação/metabolismo
20.
PLoS One ; 18(9): e0290886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682817

RESUMO

Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-ß) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-ß on neutrophil signaling and migration are, however, unclear. We sought to characterize TGF-ß signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether it directly induces neutrophil migration. We found that TGF-ß1 does not induce neutrophil chemotaxis in transwell or underagarose migration assays. TGF-ß1 does activate canonical signaling through SMAD3 and noncanonical signaling through ERK1/2 in neutrophils in a time- and dose-dependent manner. Additionally, TGF-ß1 present in the tumor-conditioned media (TCM) of invasive breast cancer cells results in SMAD3 activation. We discovered that TCM induces neutrophils to secrete leukotriene B4 (LTB4), which is a lipid mediator important for amplifying the range of neutrophil recruitment. However, TGF-ß1 alone does not induce secretion of LTB4. RNA-sequencing revealed that TGF-ß1 and TCM alter gene expression in HL-60 cells, including the mRNA levels of the pro-tumor oncostatin M (OSM) and vascular endothelial growth factor A (VEGFA). These new insights into the role and impact of TGF-ß1 on neutrophil signaling, migration, and gene expression have significant implications in the understanding of the changes in neutrophils that occur in the tumor microenvironment.


Assuntos
Neutrófilos , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator A de Crescimento do Endotélio Vascular , Leucotrieno B4 , Fator de Crescimento Transformador beta , Meios de Cultivo Condicionados , Células HL-60 , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...